quinta-feira, 27 de agosto de 2009

Nanorrobô industrial manipula nanotubos de carbono


Os nanotubos de carbono, assim como uma série de outras nanoestruturas e nanofios, são interessantes e promissores para várias aplicações científicas e tecnológicas.
Mas o desenvolvimento de tecnologias envolvendo objetos nessas dimensões tem um grande problema: como manipular estruturas tão pequenas que não podem ser vistas nem mesmo com o melhor dos microscópios ópticos?


Nanorrobô industrial



Este é o desafio que está sendo enfrentado pelo projeto NanoHand (nanomão), uma equipe que reúne cientistas de 12 centros de pesquisas europeus e cujo objetivo é construir aquele que provavelmente será o primeiro nanorrobô industrial.

Os primeiros protótipos estão mais para uma nanogarra robótica do que para uma nanomão, o que é mais do que suficiente para pegar, manipular e posicionar nanotubos de carbono ou nanofios com enorme precisão.

O nanorrobô inteiro mede dois milímetros, o que inclui todo o seu aparato de fixação no interior de um microscópio eletrônico de varredura, essencial para que o operador possa acompanhar o que a garra robótica está fazendo. "O conjunto inteiro é integrado no interior da câmara de vácuo do microscópio," explica o Dr. Volkmar Eichhorn, coordenador do projeto.

Movimento eletrotermal

A garra do nanorrobô tem uma abertura de até 2 micrômetros, sendo capaz de segurar com precisão objetos com dimensões na escala das dezenas de nanômetros.

Nessa escala, não é possível, e nem necessário, usar motores ou molas para acionar a garra mecânica: ela funciona por um princípio eletrotermal, em que uma pequena corrente elétrica causa a contração e a expansão da garra, fazendo-a fechar e abrir como se fosse uma pinça.

Forças intermoleculares

Mas isto não é tudo. Em nanoescala, as forças intermoleculares entre os objetos são mais fortes do que a gravidade. Desta forma, não basta abrir a garra para que o nanotubo solte-se e vá para a posição desejada. Na verdade, ele ficará grudado na garra do robô e não se soltará até que uma força maior do que a que o segura faça-o desgrudar-se.

Os pesquisadores encontraram duas possíveis soluções para o problema, nenhuma das quais ligada à estrutura do próprio nanorrobô. A primeira delas consiste em colar o nanotubo na sua posição final usando um feixe de elétrons - depois de ter sua extremidade colada, a garra pode se abrir e deixar o nanotubo na posição.

A segunda solução é mais exigente quanto ao local de deposição mas mais simples de operar. O local onde o nanotubo de carbono será deixado deve ser construído com princípios geométricos que garantam que ele exerça uma força molecular maior do que a força que mantém o nanotubo preso à garra do robô.

Nanofábricas

"No mundo todo, nós fomos o primeiro grupo que realmente conseguiu fazer experimentos automatizados de pegar e soltar objetos em nanoescala," diz Eichhorn.
Além do robô propriamente dito, os pesquisadores tiveram que desenvolver um programa de computador capaz de controlar todo o aparato, criando uma estação de trabalho para o controle e operação do nanorrobô.

O próximo passo da pesquisa é integrar o nanorrobô em uma nanofábrica que seja capaz de fazer todo o trabalho, desde a seleção do nanotubo até a sua deposição nos experimentos, como em chips, por exemplo. Para saber mais, veja a reportagem Nano-linhas de produção começam a dar formas a nanofábricas.


Fonte: Redação do Site Inovação Tecnológica - 27/08/2009

Nanofio bioeletrônico conecta mundos biológico e eletrônico


Pesquisadores do Laboratório Nacional Lawrence Livermore, nos Estados Unidos, mesclaram nanofios metálicos com moléculas de lipídios, criando um novo tipo de dispositivo para estabelecer uma conexão entre equipamentos eletrônicos e organismos biológicos.
O feito mereceu a capa da última edição da revista Proceedings the National Academy of Sciences.


Aplicações exóticas

Embora a primeira utilidade que venha à mente para tais eletrodos sejam os implantes neurais, permitindo que as pessoas controlem equipamentos com instruções emitidas diretamente pelo cérebro, eles abrem novos caminhos para aplicações bem mais amplas e até exóticas, incluindo novos tipos de transdutores e formas avançadas de troca de informações no interior dos computadores.

Enquanto os equipamentos eletrônicos usam campos e correntes elétricas para processar e transmitir informações, os sistemas biológicos usam um arsenal de membranas, receptores, canais e bombas para controlar a conversão de um tipo de sinal em outro - com uma eficiência que não pode ser comparado nem aos mais modernos equipamentos construídos pelo homem.
"Circuitos eletrônicos que usarem esses complexos componentes biológicos poderão se tornar muito mais eficientes," afirma Aleksandr Noy, coordenador do projeto.

Transístor de nanofios

A base do novo mecanismo é um transístor, o elemento básico de toda a eletrônica. A grande inovação é que a mesclagem entre biológico e eletrônico vai muito além de um simples revestimento biológico sobre os fios.

O transístor é feito com nanofios, cujas espessuras são comparáveis às das moléculas biológicas.


Esses nanofios são tão pequenos que os cientistas estão testando seu uso para conectar até mesmo moléculas individuais.

Integração eletrônico-biológico

Graças às mais modernas técnicas de nanofabricação, os cientistas conseguiram integrar os átomos superficiais dos nanofios do transístor com as moléculas biológicas de uma membrana de lipídios, uma estrutura encontrada em todas as células.

As membranas de lipídios são estáveis e são capazes de se autoconsertar quando sofrem algum dano. Além disso, elas formam uma barreira virtualmente impenetrável para íons e outras pequenas moléculas, mas são abertas às trocas protônicas.

Incorporando uma membrana de duas camadas sobre os nanofios do transístor, os cientistas formaram um revestimento superficial que forma uma barreira com o meio em que ele for inserido.

Controle eletrônico da membrana biológica

Os cientistas podem selecionar a membrana mais adequada à aplicação que tiverem em mente.

A principal característica da membrana lipídica é a dimensão dos seus poros, que estabelece o que pode e o que não pode chegar até o transístor, permitindo a leitura precisa dos sinais que o dispositivo deve captar.

Desta forma, é possível usar o transístor para ler informações sobre o transporte de moléculas de forma semelhante ao que os organismos vivos fazem, com a diferença de que, em vez do sinal ser lido por outro componente biológico, ele será lido eletronicamente pelo transístor.

A equipe também testou o controle no sentido inverso: alterando a tensão aplicada à porta do transístor, eles podem abrir e fechar os poros da membrana eletronicamente.

"Isto para não mencionar que essas membranas lipídicas podem abrigar um número praticamente ilimitado de máquinas protéicas que desempenham um grande número de funções críticas nas células, como reconhecimento, transporte e conversão de um tipo de energia em outro," acrescentou Nipun Misra, o principal autor do trabalho.


Fonte: Redação do Site Inovação Tecnológica - 25/08/2009


Nova data das Olimpíadas de Robôs da UFJF

Data do Evento: 23 e 24 de setembro de 2009

Mais detalhes no site: http://www.robos.ufjf.br/6olimpiadas/paginas/